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Abstract

A computer-aided system for transformation of mathematical figures into tactile graphics is useful
for visually impaired students when they learn mathematics and science. To develop such a system,
research on mathematical figure recognition techniques is needed. There are so many mathematical
figures in which graphs are drawn using broken lines. Under this situation, this paper discusses a
method of extracting and classifying broken lines from a mathematical figure.

1 Introduction

Graphs are frequently used to present functions and equations in mathematics and science. Since most
of these graphs are in visual form, they cannot be utilized by visually impaired users. Through tactile
graphics, pictures can be understood by the visually impaired. Although tactile graphics are useful for
visually impaired students when they learn mathematics and science, in 80% of Japanese schools for the
visually impaired, there is no department to produce tactile teaching material [10]. Teachers produce
most tactile graphics using less intelligent computer-aided systems. So, a better computer-aided system
of making tactile graphics is needed.

R. E. Ladner[12] and his research group studied a system that enables us to automate tactile graphics
translation. However, in this system, Photoshop, for example, is assumed to be applied for manipulating
pure graphics. So, graph recognition techniques will be a key technology to develop more intelligent
computer-aided system of making tactile graphics. This paper focuses on mathematical graphs and dis-
cusses a method of recognizing mathematical graphs. This is because structure of mathematical graphs is
more logical then that of the other graphics. This fact enables us to develop a mathematical graph recog-
nition technique. There is some research on graph recognition. Aso et al. [9] studied a graph recognition
method, and in their method, graphs must satisfy many assumptions. For example, a graph has to be
drawn inside a rectangular area that is specified by thex-axis and they-axis. The graph recognition
methods introduced in [3, 6, 11] must also satisfy assumptions about graphs. But, many mathemati-
cal figures do not satisfy all of the assumptions. Therefore, to develop a computer-aided system for
transformation of mathematical figures into tactile graphics, it is necessary to study mathematical figure
recognition techniques.

We are developing such a computer-aided system [14], which will transform mathematical figures
into tactile graphics. This paper describes some of the mathematical figure recognition techniques which
were introduced for developing our system; techniques that are related to classification of broken lines.

Mathematical figures that this paper focuses on have the following characteristics and Fig.1 shows
some of such examples.

1. Character strings and mathematical formulae may be distributed in and around the graph.

2. A character string or a mathematical formula my not lie on the correct orientation (i.e., on the
horizontal orientation).

3. Graphs can be drawn by using several types of broken lines.
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Figure 1:Examples of Mathematical FiguresLarge ComponentsSmall Components

(2) Rough Classification of Broken LineComponents by Template Matching

CharacterComponents Broken LineComponents(3) Cluster Analysis ofTentative Broke LineComponents(4) Local Segment DensityAnalysis of CharacterComponents

Graph Image IG

Input Image Iin (1) Separation of aMathematical Figureinto Small and LargeComponents
IS IL

IBIC’ ICIB’

Figure 2:Outline of Separation

2 Outline of Separation of Mathematical Figures into Character and Graph
Regions

In our method [14], all of the connected components in a mathematical figure are first divided into
three groups; large components, character components, and broken line components. The outline of this
method is shown in Fig.2.

We first apply the preprocessing to an input imageIin; a binarization, a noise reduction, and a labeling
process. After the labeling process, we have all the connected components ofIin, that is,C1, . . . ,Ct . We
then classify large components as graph components, and separate them from small components. In the
following, let IL be an image consisting of large components, whileIS an image of small components.
Since broken line components are small, they are classified as small components. Given an imageIS,
the following procedure is the outline for dividing small components into broken line and character
components.

Input: An ImageIS

Output: ImagesIB andIC
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Figure 3:Distance and Curvature of Two Clusters

(a) Dashed Linestype 1:type 2:type 3:
(b) Chain Lines

Figure 4:Broken Lines

Step 1: Classify every component ofIS as a rectangular or a non-rectangular component by a template
matching. Then, letIB′ andIC′ be images of rectangular and non-rectangular components.

Step 2: Let B′ be the set of components inIB′ . Then, apply a hierarchical clustering toB′ in order for
each cluster to consist of components of the same broken line.

Step 3: Calculate the local segment densities ofIC′ , and then roughly divideIC′ into some character
areas.

Step 4: For each clusterG, if α% or more ofG is covered by a character area, then classify all
components ofG as character components.

Step 5: Remove every component, which was classified as a character component, fromIB′ , and let the
remaining image beIB. Let IC be the image given by combingIC′ and the character components.
OutputIB andIC.

The following is the procedure of the hierarchical clustering in Step 2.

Input: A set of components{C1, . . . ,Ct} of IB

Output: A set of clustersΓ

Step 1: Calculate the distance between every pair of componentsCi andCj (i 6= j). Let D be the set of
all distances, and setGi ←{Ci} for everyi = 1, . . . , t, andΓ←{G1, . . . ,Gt}.

Step 2: Select the minimum distance fromD, sayd̂. If d̂≥ θ1, then outputΓ and stop the procedure,
otherwise setD← D−{d̂} and go to the next step.

Step 3: Let Ci andCj be the two components which give the distanced̂. If Ci andCj are members of
two different clusters, sayGp andGq, then go to the next step, otherwise go to Step 2.

Step 4: Compute the curvatureκ between the two clustersGp and Gq. If κ ≤ θ2, then setΓ ←
(Γ−{Gp,Gq})∪{Gp∪Gq}. Go to Step 2.

Fig.3 illustrates how the distance and the curvature between two clustersG1 andG2 are obtained.
This clustering was designed for extracting clusters so that each cluster might be formed of the same
broken line components. However, since this clustering is not sophisticated enough, the accuracy of its
result is not acceptable.
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3 Broken Line Classification

Fig. 4 shows examples of broken lines which this paper focuses on. Each of them is called a dashed line,
a chain line of type 1, 2, and 3, respectively. In this section, we describe methods that classify a cluster
of the previous section into a dashed line or a chain line.

3.1 Dashed Line and Chain Line Classifications

A dashed line consists of one kind of components, while a chain line is composed by two kinds of
components. Therefore, components of a dashed line are grouped into one homogeneous set. Similarly,
components of a chain line are grouped into two homogeneous sets. If we could evaluate the optimal
number of groups for a cluster of the previous section, then it makes us enable to classify the cluster into
a dashed line or a chain line. To evaluate the optimal number of homogeneous groups (i.e., clusters), we
measure it by two cluster validities,νDB(·) andνD(·) [7], whose definitions are given below. Given a set
of clustersΓ = {G1, . . . ,Gk},

νDB(Γ,k) =

(
1
k

) k

∑
i=1

[
max
j( j 6=i)

{
αi +α j

‖v̄i− v̄ j‖

}]
where fori = 1, . . . ,k,

v̄i = ∑
x∈Gi

x
|Gi |

andαi = ∑
x∈Gi

‖x− v̄i‖
|Gi |

νD(Γ,k) = min
1≤i≤k

 min
1≤ j≤k, j 6=i

 δ̂ (Gi ,G j)

max
1≤t≤k

{∆(Gt)}




where for any clustersSandT,

∆(S) = max
x,y∈S
{δ (x,y)} andδ̂ (S,T) = min

x∈S,y∈T
{δ (x,y)}.

Here,δ (x,y) is the distance betweenx andy.
These two cluster validities do not work correctly whenk = 1. So, we introduce fuzzy inference to

avoid this drawback. Note that in the following, a component is expressed by the two characteristics; the
number of pixels and the length of its long-side.

Dashed Line Classification

Input: A clusterG of broken line components

Output: If G is a dashed line, then Yes, otherwise No.

Step 1: For everyk = 2,3,4,5, applyk-means clustering method toG, and letΓk be the result when
the number of clusters wask. CalculateνDB(Γk,k) andνD(Γk,k).

Step 2: Based on the valuesνDB(Γk,k) andνD(Γk,k), apply the fuzzy inference. IfG was classified as
a dashed line, then return Yes, otherwise return No.

The fuzzy inference in Step 2 is the max-product-centroid fuzzy inference, and its fuzzy rules are
shown below. Because of the lack of the space, the definition of membership functions is omitted.
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Rule 1: If νDB(Γ2,2) is Large, |min{νD(Γk,k) : k = 3,4,5)}− νD(Γ2,2)| is Large, and(N+/N−) is
Large, thenG is a dashed line.

Rule 2: If νDB(Γ2,2) is Small, |min{νD(Γk,k) : k = 3,4,5}− |νD(Γ2,2) is Small, and(N+/N−) is
Small, thenG is not a dashed line.

In the description above,N+ = max{n(C1), . . . ,n(Ct)} andN− = min{n(C1), . . . ,n(Ct)}, wheren(Ci) is
the number of pixels of a componentCi ∈G= {C1, . . . ,Ct}.

We discuss chain line classification, which distinguishes a cluster of chain line components. If a
cluster was classified as a chine line, then the chain line classification also gives its type. The following
is the procedure.

Chain Line Classification

Input: A clusterG of broken line components

Output: The type ofG, if G was classified as a chain line, otherwise No.

Step 1: Apply k-means clustering method toG by settingk = 2, and then divideG into two groups.
Assign the label a to elements of one group, and also assign the label b to elements of the other
group. Then, a sequence of labels corresponding toG is obtained.

Step 2: Calculate the similaritySp(G) (p= 1,2,3) between the sequence and the template of a typep
chain line. Here, the template of type 1 chain line is ababab· · · . Similarly, those of types 2 and 3
are abbabbabb· · · and abbbabbb· · · , respectively.

Step 3: If the similarity Sp(G) was equal to the number of elements ofG, then classifyG as a typep
chain line and returnp, otherwise return No.

For the sequence given by Step 1 and the template of a typep chain line, the similaritySp(G) is
defined as the number of continuously corresponding labels. Lastly, the procedure of the broken line
classification is described below.

Broken Line Classification

Input: A set of clustersΓ = {G1, . . . ,Gt}

Output: A set of dashed line clusters∆, sets of typep chain line clustersXp (p= 1,2,3), and a set of
clustersΦ in which each of them contains only one element.

Step 1: Set∆← /0, Xp← /0 (p= 1,2,3), andΦ← /0.

Step 2: If Γ is empty, then output∆, Xp (p= 1,2,3), andΦ, and stop the procedure.

Step 3: SelectGi from Γ, and setΓ← Γ−{Gi}. If Gi includes only one component, then setΦ←
Φ∪{G}, and go to Step 2.

Step 4: Apply the dashed line classification toGi . If Gi was classified as a dashed line, then set
∆← ∆∪{Gi} and go to Step 2.

Step 5: Apply the chain line classification toGi . If Gi was classified as a typep chain line, then set
Xp← Xp∪{Gi} and go to Step 2.
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Step 6: Divide G into three groupsG`, Gp, andGr in the following way. SupposeSp(G) is the largest
among the 3 similaritiesS1(G), S2(G), andS3(G). Gp includes all the elements that gave the
similarity Sp(G), G` andGr include elements whose locations are the left-side and the right-side
of Gp, respectively.

Step7: Gp is classified as a typep chain line, and setXp← Xp∪{Gp}. Also setΓ← Γ∪{G`,Gr}. Go
to Step 2.

3.2 Merging Clusters

Since the broken line classification divides a cluster into several groups until every cluster is classified
into one of the 4 types of broken lines. Therefore, we need a merging process that merges clusters of the
same broken line into a single cluster. Our merging process consists of two parts;

1. merging based on fuzzy inference, and

2. merging based on the spline interpolation.

The following is an outline of our merging process.

Input: A set of clustersΓ before merging

Output: A set of clustersΓ after merging

Step 1: Select a pair of clusters(Gi ,G j) which is not tested yet. If there exists no such pair, then output
Γ and stop the procedure.

Step 2: If the types ofGi andG j are different, then go to Step 1.

Step 3: Apply (Gi ,G j) to the merging process based on fuzzy inference. If this pair was merged into a
single clusterG, then go to Step 5.

Step 4: Apply (Gi ,G j) to the merging process based on the spline interpolation. If this pair was not
merged into a single clusterG, then go to Step 1.

Step5: UpdateΓ by settingΓ← (Γ−{Gi ,G j})∪{G}, and go to Step 1.

If two clustersGi andG j had the characteristics,

1. the number of pixels of every component inGi andG j is close to each other,

2. the length of the long-side of every component inGi andG j is also close to each other, and

3. the distance between the two broken lines corresponding toGi andG j is short,

then it is plausible that these two clustersGi andG j are part of the same broken line. The merging
process based on this idea is realized by fuzzy inference. The characteristics that are applied to fuzzy
inference are the following.

Average number of pixels: When a clusterG corresponds to a dashed line, we have
one average (a1(G)), while in the case where a cluster corresponds to a chain line, we have two
averages; one (a11(G)) is for short segments, and the other one (a12(G)) is for long segments.
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Average length of long-sides: Similarly, we have one average (a2(G)) when a
clusterG corresponds to a dashed line, but there are two averages (a21(G) anda22(G)) for the
cluster corresponding to a chain line.

Distance: This is the shortest distance (a3(Gi ,G j)) between the two broken lines corresponding to
the two clustersGi andG j .

Curvature: This is the curvature (a4(Gi ,G j)) at the connected point of the two broken lines corre-
sponding to the two clustersGi andG j .

In the case where both of two clustersGi , G j are dashed lines, the following fuzzy rules are applied.

Rule 1: |a1(Gi)−a1(G j)| is Small, |a2(Gi)−a2(G j)| is Small, a3(Gi ,G j) is Short, anda4(Gi ,G j) is
Small, then these two clusters are merged into one.

Rule 2: |a1(Gi)−a1(G j)| is Large, |a2(Gi)−a2(G j)| is Large, a3(Gi ,G j) is Long, anda4(Gi ,G j) is
Large, then these two clusters are not merged into one.

Next, in the case where both of two clustersGi , andG j are chain lines, the following fuzzy rules are
applied.

Rule 1: |a11(Gi)−a11(G j)| isSmall, |a12(Gi)−a12(G j)| isSmall, |a21(Gi)−a21(G j)| isSmall, |a22(Gi)−
a22(G j)| is Small, a3(Gi ,G j) is Short, anda4(Gi ,G j) is Small, then these two clusters are merged
into one.

Rule 2: |a11(Gi)− a11(G j)| is Large, |a12(Gi)− a12(G j)| is Large, |a21(Gi)− a21(G j)| is Large,
|a22(Gi)−a22(G j)| is Large, a3(Gi ,G j) is Long, anda4(Gi ,G j) is Long, then these two clusters
are not merged into one.

Broken line classification processes the rectangular components of an imageIB. Non-rectangular
broken line components are classified as character components, and any broken line component which
connects to thex-axis, for example, will be classified as a large component. It means that broken line
components which were classified as character components or large components may exist between two
clusters. Based on this idea, we introduce merging based on the spline interpolation below. First, we
calculate a cubic spline function between the two broken lines corresponding to clustersGi and G j .
Then, the gap between these two broken lines is interpolated by this spline function. If 50% or more
of this interpolated route was occupied by character components and large components, then these two
clustersGi andG j are merged into a single cluster.

4 Experimental Results

We selected 19 mathematical figures with broken lines from mathematics and science text books. These
printed figures were scanned by an image scanner, whose resolution was set at 600 dpi. The electric
images were saved in a bitmap format. The font size of characters in the figures is almost 8pt; it was
checked by visual observation. The size of bitmap images is in almost 1,500× 1,500 pixels. The
total number of broken lines that are included in the 19 figures is 90. Fig.5 shows examples of the
mathematical figures.

The 19 images were first applied to the separation method from Section2. Fig.6 shows the images
of character components which were separated from graphic components. Then, 138 clusters of broken
line components were extracted by the hierarchical clustering in Step 2 of the separation method. After
that these 138 clusters were inputted to the broken line classification from Section3, we then had 147
dotted lines and chain lines.
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The correct numbers: dotted lines (106), chain lines (18), others (23)

The classification results: dotted lines (100), chain lines (14), others (33)

No incorrect classification existed when a cluster was classified as a dotted line or a chain line. Since
6 dotted line clusters and 4 chain line clusters included only one or two components, these clusters were
not classified as a broken line.

Next, we applied the merging process from Section3.2 to the 124 broken line clusters (i.e., the 106
dotted line clusters and the 18 chain line clusters). Then, these 124 broken line clusters were merged into
97 broken line clusters. 70 clusters out of the 97 clusters form completed broken lines, and each of the
remaining clusters forms a part of a broken line.

We often measure the effectiveness of a system by the precision and the recall. The precision is
defined as the ratio of the number of broken lines that were correctly classified to the number of classified
broken lines. The recall is defined as the ratio of the number of broken lines that were correctly classified
to the number of correct broken lines. The precision (p) and the recall (r) of our method is therefore
p= 70/97= 0.72 andr = 70/90= 0.78.

Fig.7 shows the results of the merging process. We did not obtain the correct merging results for
the two broken lines in the graph of Fig.5-(4). The dotted line clusters (b) and (c) in Fig.7-(4) must be
merged into a single cluster, and also the dotted line clusters (d) and (f) must be merged into one. The
reason why they were not merged is that spline function could not find the correct route between the two
clusters.

5 Conclusion

In this paper, we discussed pattern classification of mathematical figures. Especially, we proposed a
method for extracting and classifying broken lines drawn in mathematical figures. Our method creates
good classification results, however, it includes some drawbacks. So, these drawbacks will be improved
in the near future.
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