Combining Effectively Math Expressions and Textual
Keywords in Math IR

Giovanni Yoko Kristianto!, Goran Topi¢?, and Akiko Aizawal?

! The University of Tokyo, Bunkyo-ku, Tokyo, Japan
giovanni@nii.ac.jp
2 National Institute of Informatics, Chiyoda-ku, Tokyo, Japan
goran_topic@nii.ac.jp, aizawa@nii.ac.jp

Abstract

Math IR systems are using mathematical expressions and text in documents to enable full text
search. However, effective techniques or weighting schemas to combine math expressions and key-
words in search have not yet been fully investigated. This paper examines the effectiveness of several
learning-to-rank methods to combine math expression and textual keyword scores. Our experimental
results showed that the learning-to-rank methods deliver significantly better performance (up to 25.89%
precision improvements) than the standard Lucene tf-idf scoring method.

1 Introduction

In Mathematical Information Retrieval (MIR), users may search for mathematical expressions
using queries that contain not only math expressions, but also textual keywords. Majority of the
MIR systems have both math and text indexed in their systems in order to handle such queries.
However, effective techniques to combine math expressions and textual keywords in math search
have not yet been fully investigated. Most MIR systems use either Lucene scoring [8,9,12, 16]
or linear combination [11,15] methods. Yet, to use Lucene scoring method as it is may not
be optimal, since MIR systems quite often generate more math terms than textual terms from
a query, and as a consequence, the score of a matched math expression is mostly composed
of scores from math terms. In the systems that use linear combination method [11,15], each
retrieval unit has math- and text-related scores. To obtain a final score for each retrieval
unit, these systems linearly combine the math and text scores using predefined weights. In
the NTCIR-11 Math-2 Task [1], RIT team [15] reported that weight 0.50 given to the text
scores, which means that math and text are equally weighted, achieved the highest ranking
performance among other weights (0.00, 0.05, and 0.25). However, due to the limitation of this
task, where each participant could submit only up to 4 runs, they had not yet investigated
the ranking performance for text weights beyond 0.50. Nevertheless, we suggest that setting
the text weight higher than the expression weight (i.e. text weight over 0.50) may deliver
better search results than if both text score and expression score have the same weights. This
consideration comes from the fact that mathematical expressions, despite their usefulness at
expressing concepts, are quite often ambiguous; and such ambiguity can often be resolved by
accessing the textual context of each particular expression.

This paper addresses the problem of combining math expressions and text for MIR. We
examine the effectiveness of several learning-to-rank (L2R) methods for obtaining the optimal
combination. Then, we compare the precision obtained by these methods to the precision
acquired by Lucene scoring method, and show that the L2R methods significantly outperform
Lucene scoring method. We also investigate the importance of math and text in Math IR.

Combining Effectively Math Expressions and Textual Keywords in Math IR Kristianto, Topié, Aizawa

2 Related Work

In order to make posible searching math using a combination of keywords and math expression
queries, MIR research focused on the math expression indexing technique [5, 6,10, 14] and on
how to exploit text. Many previous MIR systems [8,9, 11,12, 16], even though they employ
different techniques to encode math expressions, use Lucene to index and search both the math
and textual keywords. Some other systems [4,15] employ custom indexing techniques to index
the math expressions, but still use Lucene to index the text found in math documents. For
a given query containing math and keywords, several systems [8,9,12] assign each matched
math a score obtained using Lucene scoring method. MIaS [16] uses Lucene scoring function
as well, but also adds another parameter to the function, i.e., additional weight for the query
term if the term comes from math expressions in the query. Nguyen et. al [13] introduced
the Ranking Passive Aggressive algorithm as a method to obtain an optimal weight vector
whose each element denotes the weight for an indexed (math or text) term. Another common
approach to get a final score of each matched math expression is to linearly combine the score
from the math index and the score from the text index [11,15]. In the RIT system [15], the
score for a document is given by linearly combining the maximum score for a math in the
document given math query and the score of the document given textual query. They use
formula score(d) = a text(d) + (1 —) formula(d) to obtain the final score, submitting results
for @« = {0,0.05,0.25,0.50}. Their experiment results showed that @ = 0.50 gave the best
precision. Within the works that use Lucene scoring method, the one that adds another weight
for each term achieves the highest precision in NTCIR-11 Math-2 Task. Estimating such weights
requires either a heuristic approach [16] or a large-scale learning technique [13]. In contrast,
the linear combination method with a priori weights can be implemented in a straightforward
manner.

To obtain the optimal weights for math and text score in a linear combination, we can
apply machine learning method, e.g. multiple linear regression. In fact, learning-to-rank (L2R)
refers to machine learning techniques for constructing ranking models. Generally, learning to
rank methods can be divided into three categories: pointwise, pairwise, and listwise methods.
Pointwise approach, e.g. linear or polynomial regression, transforms the ranking problem into
classification, regression, or ordinal classification. The pairwise approach, e.g. RankBoost [3]
and LambdaMART [17], transforms ranking into pairwise classification or pairwise regression.
The listwise approach, e.g. ListNet [2] and AdaRank [18], takes ranking lists as instances in
both learning and prediction. This paper examines the effectiveness of these approaches for
combining math and text scores in MIR.

3 Owur Approach

Figure 1 shows the general framework of MIR systems. This paper assumes that MIR systems
involves two or more indices (or one index, but with two or more fields): at least one for math
and one for text. To enable searching using queries that contain math and textual keywords,
the MIR systems first perform math expression retrieval and text retrieval using the math and
text indices, respectively. This process will generate two or more retrieval lists. The reranking
module then combines the scores from these lists to produce a rank list of retrieved math
expressions. The implementation of MIR system in this paper used an vertical-path-based
technique [7, 8], which encodes the structure and content of math expressions, to store math
expressions in a database. There are three fields in our storage schema dedicated to store
the encoding results: opaths (ordered paths), which stores the vertical path of each node in

Combining Effectively Math Expressions and Textual Keywords in Math IR Kristianto, Topié, Aizawa

Query

math: xxx
text: xxx

document
collection

Math Index
(or Field)

Searchlr}g for Retrieved Math
| math using g,,, |—» (

(math: xxx) math;, score,)

Reranking Rank List
Model (math, scoreg,.)
Searching for /R

math,: text Indexing
math &

text

math,: text

Text Index

math using g, etrieved Math
(or Field)

(text: xxx) (math;, score,,)

Figure 1: Overview of math search system used in this paper

the math with preserving the ordering information, upaths (unordered paths), which stores
the same content as opaths, but without ordering information, and sisters, which stores the
sibling nodes in each subtree. We also construct a word vector representation of each math
expression’s context by associating the math with its surrounding text (10 words before and
after the math).

3.1 Combining Expressions and Keywords using Lucene Scoring

We import the encoding result and associated text of each math expression into search platform
Apache Solr. In our MIR system, a query can be a combination of math and textual keywords.
Query keywords and encoding results of query math are then converted into Solr disjunctive
query. We set Solr to utilize default tf-idf similarity, which its practial scoring function is given
by (1)!, to score each math expression f, whose each term is denoted by ¢, that matches the

query.

score(q, f) = coord(q,) x queryNorm(q) X Z (tf (t, f) x ddf (t)* x norm(t, f)) (1)

t €q

The tf is the term frequency, idf is the inverse document frequency, norm encapsulates a few
indexing time boost and length factors, coord denotes a score factor based on how many of the
query terms are found in the specified math, and queryNorm is a normalizing factor used to
make scores between queries comparable.

3.2 Combining Expressions and Keywords using Learning to Rank

The scores from (1), however, may not be optimal for ranking when the query contains both
math and text. For instance, our results for text-only queries are occasionally better than those
for queries with both math and text. Our investigation showed that this happens because, in
our system, the number of terms generated from math encodings are often much higher than
the number of terms from text. This indicates that when we have multiple features for each
retrieval units, the default Lucene tf-idf scoring method may not be optimal to combine those
features for ranking. Therefore, we need to weight appropriately each feature. Since the proper
weights will strongly depend on the implementation of Math IR system, we need a learning
method to obtain these weights.

Thttps://lucene.apache.org/core/5_3_1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
(Accessed at: 2015-12-10)

Combining Effectively Math Expressions and Textual Keywords in Math IR Kristianto, Topié, Aizawa

This paper prevents a bias toward math-generated terms by first obtaining two scores, i.e.
from math terms and from textual terms, separately. Then, these scores are normalized as
normsScore = % The math and text scores are the features for the L2R methods. This
paper applies four different L2R methods, which are briefly described as follows. Multiple linear
regression estimates the weight of each feature using least square technique. LambdaMART [17]
combines the strengths of boosted tree classification and LambdaRank. AdaRank [18] linearly
combines weak rankers for making ranking predictions. ListNet [2] uses different probability

distributions to define the loss function.

4 Experiments

This paper used the dataset released by NTCIR11 Math-2 Task [1], which consists of 8,301,578
retrieval units (paragraphs) that contain around 60M math expression, 50 topics each of which
includes a list of math expressions and a list of keywords, and result of pool assessment (50
retrieval units per topic, manually assessed with a relevancy score 0-4). The relevancy score
0 denotes non-relevant unit, 1-2 partially relevant, and 3-4 highly relevant. In the evaluation,
we first generated a ranked list of all retrieval units that match the query. Next, we created
a condensed list from the raw ranked list by removing all unjudged retrieval units. We used
the condensed list for the evaluation because the number of assessed units per topic is very
small compared to the total number of retrieval units in the dataset (incomplete assessment)
We evaluated the ranking performance of Lucene’s tf-idf and L2R methods for combining math
expressions and textual keywords for math searching. For Lucene scoring, the score(q,p;) of
each retrieval unit p; for a given query ¢ is calculated using step 1.1. in Procedure 1. For L2R
methods, since the retrieval unit in our database (math) is different from what the assessment
result expects (paragraph), we use Procedure 1 for constructing the training set.

Procedure 1 (Training Set Construction).

1. Get a math expression f* to represent each retrieval unit (paragraph) p; in the training
set.

L1. Set ff = argmaxy, ¢, score(q, fi;) and score(q,p;) = score(q, f), where ¢ is a query
that contains math and keywords and score(q = query, f = math) is defined by (1).

2. Get features for each retrieval unit p; in the training set.

2.1. For each topic, compose math query gy and textual query g;.
2.2. Features: sy = score(qy, fF) and s, = score(qy, f})
2.3. Response: binary relevancy score (depends on either high or partial relevancy setting).

For LambdaMART and AdaRank, we set Mean Average Precision (MAP) as the metric to
optimize on training data. For testing, the learned models are applied to rank all math found
in all retrieval units. We use the step 1.1. in Procedure 1 to obtain score(q,p;) of each re-
trieval unit, then rank the retrieval units based on this score. The evaluation metrics are MAP,
Precision-at-5, and Precision-at-10. The L2R methods are evaluated using nested cross valida-
tion (5-inner-fold for tuning hyperparameters and 10-outer-fold for reporting performance).

Experiment Result

Table 1 shows the ranking performance from L2R, Lucene scoring, and searching using ei-
ther only math or keywords as queries. First, the L2R methods outperform Lucene scoring

4

Combining Effectively Math Expressions and Textual Keywords in Math IR Kristianto, Topié, Aizawa

Table 1: Performance from each method.

1-9 statistically significant (p < 0.05 in ANOVA with post-hoc Tukey HSD) compared to model with
the specified ID.

Highly Relevant Partially Relevant
ID | Model MAP | P@5 | P@i0 MAP | Pa5 | P@io
1. | math (a = 0.0) 4108 .4440 .3820 5085 6800 .6220
2. | keywords (oo = 1.0) | .4953! 54401 .5260! 58761 .940013 .904013
3. | lucene scoring 53701 576071 .48801 621312 78401 .73401
4. | Mult. linear regr. .6259123 | 652012 .566013 7471123 .952013 .914073
5. | LambdaMART .6198123 .6640T23 | 546013 7478123 .940013 .924013
6. | AdaRank 6151123 .652012 .550013 .7520123 952013 924013
7. | ListNet 591312 .6160T .5340T 7529123 956013 | .924013
Precision from several text weights o (score(q,p;) = ast + (1 — a)sy)
a=0.50 .6245 .6560 .5660 7248 .9360 .8720
a = 0.60 .6261 .6520 .5720 7467 .9520 .9140
a=0.80 6016 .6320 .5600 7559 .9600 .9240
a=0.90 5843 .5880 5520 7565 .9520 .9280

Table 2: Weights (p < le — 9 in two-tailed t-test) for each fold in multiple linear regression.
Weights for -th fold
1 2 3 4 5 6 7 8 9 10

High Relv. math | .3572 .3564 .3742 .3882 .3909 .3875 .4014 .3891 .3481 .3662
text 6428 .6436 .6258 .6118 .6091 .6126 .5986 .6109 .6519 .6338
Part. Relv. math | .3919 4005 .3817 .3982 .4010 .4026 .4026 .3993 .3739 .3905
text 6081 .5995 .6183 .6018 .5991 .5974 .5974 .6007 .6261 .6095

approach at all metrics. The highest performance obtained by L2R methods improves MAP,
P@5, and P@10 by 21.18%, 21.94%, and 25.89%, respectively. Compared to the search that
uses only textual keywords as queries, the Lucene scoring method, which combines math and
text, surprisingly performs lower, especially at P@10. This happens because, on average, a
query generated from each topic contained 94.82 math terms and 3.1 textual terms, and as a
consequence, text has a low impact on the score of each retrieval unit. On the other hand,
all L2R methods give improvements over text-only search in both relevancy settings. Among
the L2R methods, however, there is no statistically significant difference among them. The
linear regression method, albeit simple, is quite impressive since it delivers performance close
to the highest one. We also examine the importance of text score in comparison to the math
score. Table 2 shows the coefficients of math and text scores calculated in linear regression
models. The result confirms that (at least in our dataset) text has more impact than math
in predicting the relevance of a retrieval unit. The second part of Table 1 reports the highest
performance from linearly combining math and text scores using text weight « (from exhaustive
weight search). The L2R methods perform comparably to this linear combination with exhaus-
tive weight search. In the linear combination, for high relevancy setting, text is slightly more
important than math (the highest precision is at « = 0.60). For partial relevancy, a = 0.90
gives the highest precision. Such a high « shows that in the dataset, retrieval units that contain
dissimilar math expressions, but contain textual terms matching the keywords are likely to be
considered as partially relevant. This explains that there is a judgment tendency in partial rel-
evancy cases: text matching is more important than math matching. Yet, there was no explicit
statement in the task design of NTCIR-11 Math-2 about this tendency. Such insight should be
considered in the task design, so that the participants can tune their systems.

Combining Effectively Math Expressions and Textual Keywords in Math IR Kristianto, Topié, Aizawa

5 Conclusion

We investigate learning-to-rank methods to optimally combine math and text scores for MIR.
We show that these methods significantly outperform Lucene tf-idf scoring method. Using
MCAT system as backend and NTCIR-11 Math-2 dataset, we find out that text has more
impact than math in predicting the relevance of a retrieval unit. For future work, we consider
applying several different methods to encode math expressions and extracting more textual
information about math expressions, then using L2R to exploit them.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 14J09896, 25245084, and 24300062.

References

[1] A. Aizawa, M. Kohlhase, I. Ounis, and M. Schubotz. NTCIR-11 Math-2 task overview. In Proc.
of the 11th NTCIR Conference, 2014.

[2] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: From pairwise approach to
listwise approach. In Proc. of the 24th International Conference on Machine Learning, 2007.

[3] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining
preferences. Machine Learning Research, 4:933-969, 2003.

[4] R. Hambasan, M. Kohlhase, and C. Prodescu. MathWebSearch at NTCIR-11. In Proc. of the 11th
NTCIR Conference, 2014.

[6] X. Hu, L. Gao, X. Lin, Z. Tang, X. Lin, and J. B. Baker. Wikimirs: A mathematical information
retrieval system for wikipedia. In Proc. of the 13th ACM/IEEE-CS JCDL, 2013.

[6] S. Kamali and F. W. Tompa. Retrieving documents with mathematical content. In Proc. of the
36th International ACM SIGIR Conference, 2013.

[7] G.Y. Kristianto, G. Topié, and A. Aizawa. Exploiting textual descriptions and dependency graph
for searching mathematical expressions in scientific papers. In Proc. of the 9th ICDIM, 2014.

[8] G.Y.Kristianto, G. Topi¢é, F. Ho, and A. Aizawa. The MCAT math retrieval system for NTCIR-11
Math track. In Proc. of the 11th NTCIR Conference, 2014.

[9] P. Libbrecht and E. Melis. Methods to acess and retrieve mathematical content in activemath. In
Proc. of the 2nd ICMS, 2006.

[10] X. Lin, L. Gao, X. Hu, Z. Tang, Y. Xiao, and X. Liu. A mathematics retrieval system for formulae
in layout presentation. In Proc. of the 37th International ACM SIGIR Conference, 2014.

[11] A. Lipani, L. Andersson, F. Piroi, M. Lupu, and A. Hanbury. TUW-IMP at the NTCIR-11 Math-2.
In Proc. of the 11th NTCIR Conference, 2014.

[12] R. Munavalli and R. Miner. Mathfind: A math-aware search engine. In Proc. of the 29th Annual
International ACM SIGIR Conference, 2006.

[13] T. T. Nguyen, K. Chang, and S. C. Hui. A math-aware search engine for math question answering
system. In Proc. of the 21st ACM CIKM, 2012.

[14] T. T. Nguyen, S. C. Hui, and K. Chang. A lattice-based approach for mathematical search using
formal concept analysis. Ezpert Systems with Applications, 39(5):5820-5828, 2012.

[15] N. Pattaniyil and R. Zanibbi. Combining t{-idf text retrieval with an inverted index over symbol
pairs in math expressions: The tanget math search engine at NTCIR 2014. In Proc. of the 11th
NTCIR Conference, 2014.

[16] M. Ruzicka, P. Sojka, and M. Liska. Math indexer and searcher under the hood: History and
development of a winning strategy. In Proc. of the 11th NTCIR Conference, 2014.

Combining Effectively Math Expressions and Textual Keywords in Math IR Kristianto, Topié, Aizawa

[17] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for information retrieval
measures. Information Retrieval, 13(3):254-270, 2010.

[18] J. Xu and H. Li. Adarank: A boosting algorithm for information retrieval. In Proc. of the 30th
Annual International ACM SIGIR Conference, 2007.

