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Abstract 
Some twenty years ago in The Netherlands math had become practically 

inaccessible, the primary problem being the lack of a braille math code. At DEIMS 
2012 Dorine in ‘t Veld explained how this situation came to bei. A linear notation was 
introduced to do math on the computer with braille display support. In the notation the 
braille output is not defined; it depends on the table that the user selected in their screen 
reader or braille display. It is not a ‘math braille code’, but the notation worked better 
than initially supposed, also on academic level. We are now working on generating this 
notation directly from MathML. Our ‘quick fix’ might prove a lasting solution, maybe 
even with international importance. 

1 Introduction 
One of the biggest obstacles in learning math twenty to fifteen years ago was the combination of 

blind students not learning a math braille code and books being transcribed differently per transcriber. 
Students integrated rapidly into mainstream schools and worked with a computer with a braille 
display and speech output. Printed braille was hardly used anymore, especially in mainstream 
secondary schools.  

Books were delivered to the students in WordPerfect and later in Microsoft Word format. For the 
mainstream teachers – and thus for integration – this had big advantages; they didn’t have to learn 
braille, since text could be read on the computer screen. Contracted braille was abandoned. So the 
display of text was ‘one-to-one’ on an 8-dot braille display. Since a Dutch 8-dot table was not 
available, some students used the American and others the German 8-dot table. 

Support by TVIs (teachers of the visually impaired) was minimal. Students received their books 
digitally, i.e. they received the text version that would produce the right braille when printed. To 
sighted peers and teachers the notation looked ‘odd’. E.g.: 5 ü2 would mean ‘5 over 2’. Blind students 
didn’t learn this either, but could look up the meaning in a symbols list in the book. What ü would 
look like on their braille display, as said, depended on the braille table in use. It likely looked very 
different from the corresponding 6-dot character on paper.  

For notation, they would use : or /, since this is much easier to type, especially on a laptop 
keyboard. However: 5 /2 in their books would mean ‘5 to the power of two’. This was very confusing 
for blind students as well as for their sighted peers and teachers who were more used to linear notation 
as in calculators, where 5/2 definitely means ‘5 over 2ii’.  

With many more of this type of ‘odd’ and confusing notations, many students and their teachers 
gave up. Since math was not compulsory for the final exams, braille students for some ten years were 
advised not to choose math, but to choose text oriented studies instead. Only very few youngsters will 
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choose math when their teachers emphasize that it is impossible for a blind student to do math. But 
then legislation changed. Math became compulsory again. A quick fix was needed! It was not feasible 
to choose a braille code and train all TVIs. Besides: should we choose a code from our English, 
German or Belgian neighbors? Both Germany and Belgium at the time had several codes and what 
would be better: the English braille code or the Nemeth Code? 

In order to make math accessible again, starting around the year 2000 in The Netherlands a 
notation was developed for braille students working with a braille display, that was a mix of the 
calculator notation mentioned above and linear notations as in Microsoft Excel or in the command 
line mode of Mathematica, Maple and other math software. This notation was standardized by a 
taskforce of math teachers for the VI in primary and secondary education (age 6-18). It required no 
conversion software. A sighted person could read and write it without much training.  

At the start there were doubts if this notation would work, since in advanced formulas many 
parentheses may be needed. But it looks very much like ‘we can train the brain’; students who learned 
to work with this notation are quite happy with it.  

Due to privacy legislation it is very hard to come up with exact numbers. There are about 40 
braille students in mainstream secondary education; and in all probability an equivalent amount of low 
vision students (seeing too little to read normally and who cannot read formulas or graphics). Around 
the age of 20 we see an increase of blind and low vision students due to accidents, diseases or 
hereditary illnesses that manifest themselves. Again we don’t have exact figures. What we can say is, 
that nowadays all VI students in The Netherlands do math in secondary school again and we have a 
steadily increasing number of STEM students, especially in the field of computer science. 

Since 2005 Dedicon transcribes the math books in the linear notation mentioned above (that is 
documented at http://braille.dedicon.nl/wiskunde) and students learn to work with it in the schools. 

We recently upgraded the website, replacing the examples that were in .gif format with interactive 
MathML, allowing zooming without visual quality loss for partially sighted readers. We added a lot of 
notation that we had in the mean time developed for – and in cooperation with – academic students, 
requesting books with mathematical content, that we didn’t have a fixed linear notation yet. 

You might say we have a pragmatic approach. We have to, since math notation is very extensive 
and we are not an institute that specializes in math. We have to transcribe books for students on 
demand. Our goals is to give them access to those books and thus the education they have the 
capacities for. Lately, due to the success of our work and more academic students choosing math, we 
get more and more demand for more advanced math notations.  

The next step, we hope, will be to generate the ‘universal linear notation’ in the textbooks for 
students directly from MathML. The reason we choose MathML is obvious: it is at the core of 
accessibility, compatible with DAISY4 and EPUB3 (the format we will adopt for production), already 
allows TTS and it will allow our notation to be built into many programs. 

2 Design 
The linear math notation comprises two independent parts that map directly to tasks for 

transcription, one to linearize the visual notation, the other to substitute plain text descriptions for the 
specialized math symbols. Because of their independence these steps can be applied in any order, 
assuming there exists an appropriate way of storing the intermediate, not yet linearized representation. 
The aim of the notation is to convey the visual appearance of mathematics. Because of this the 
semantics of most of the ‘code’ are undefined. That is to say, there is a definition for the notation of 
‘something in superscript’, e.g. x^2 means ‘x with superscript 2’. But there is nothing in the notation 
to indicate whether this means ‘x to the power of 2’ or if it is just a superscript, e.g. to indicate a 
footnote. Similarly, 1 + 2 is nothing more than two numbers separated by a symbol (the plus sign). 
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The notation doesn't tag this as a summation, and indeed in more advanced – or shall we say abstract – 
areas of science the plus sign may very well be used like this but with a different meaning than 
summation. This is analogous to MathML’s presentation mode, versus its ‘storage-proof’ content 
mode. One example of an exception is the notation of roots, such as sqrt(4) = 2 or root_3(27) = 3. Just 
as in MathML presentation mode we use special elements for these. More or less the same goes for 
fractions, but these are more complicated (see section 4). 

 

2.1 Linearization 
In this step the visual representation is transformed into a linear form. This is often a very natural 

process that is also used outside of the field of accessible math. For example, most people will 
understand what is meant by 3/8, (2 + 1)/(4 * 2), 5^2 and x_1. 

Although the notation was not explicitly developed based on the MathML specification, it turns 
out that a lot of concepts from MathML presentation mode apply to the notation as well. For example, 
the following MathML fragment can directly be transformed into the linear form 5^2 without adding 
or removing information: 

<math>  <msup>  <mn>5</mn>  <mn>2</mn>  </msup>  </math> 
 

2.2 Symbol substitution 
In this step mathematical symbols – and sometimes other symbols too – are replaced with a 

description in plain text. The biggest challenge is to find as short as possible a notation that is still 
easily – and preferably internationally – understandable. We’ll explain this in this subsection. 

As it is, the notation is easy to read and write (i.e. to type on a PC), both for sighted and blind 
people, while the use of most graphical interfaces (like MathType or dialog boxes and toolbars in 
programs like Microsoft Word) is inaccessible for blind users and often slower for sighted users. 
Generally it is considerably easier and faster to type plain text than it is to find the appropriate 
Unicode characters for these specialized symbols in graphical interfaces, e.g. pi instead of the Unicode 
symbol π (the Greek letter pi).  

The Dedicon notation thus defines descriptions for the infinity sign (inf), but also for derivatives, 
integrals (Intg), logic, set theory, and so on. As an example of the latter, one might write 3 element {1, 
2, 3, 4}. The word ‘element’ simply replaces the symbol ∈ (‘is element of’). This is true even for the 
Greek letters that are so ubiquitous in mathematics.  

At present, Dutch is the predominant language in the Dedicon notation for these descriptions, but a 
few are in English. For example: ‘inf’ for infinity – instead of the Dutch ‘oneindig’. In many cases it 
is simple to replace the Dutch with English and often it has advantages since many English terms are 
conveniently short. E.g. ‘not’ is shorter than the Dutch ‘niet’. Probably for Dutch students doing this 
level of math it would not be a problem to work with English abbreviations and it might prove a big 
advantage to be used as an internationally oriented notation on academic level. 

3 Strong points 
One of the very strong points of the Dutch notation is that it remains consistent notwithstanding in 

what application it is used. It can be converted from Microsoft Word or HTML to plain text or 
Markdown without a problem. That is because the notation only uses characters that can be typed with 
a qwerty keyboard. It can be used for direct communication without requiring additional assistive or 
conversion software. 



As explained in the introduction, ever since the notation was implemented we have an increasing 
number of braille students passing their final exams in mathematics and science successfully. So our 
concern, that the notation might not work in more advanced situations that require many parentheses 
and brackets, was denied. Obviously – or maybe apparently is a better word, since there is no 
scientific evidence yet – one can train the brain. In other words, the brain adapts to what it is trained to 
do. In fact when asked, students mostly state that they prefer the Dedicon notation over learning a 
braille math code. Of course the students cannot really compare the two, since they were never trained 
in using a braille math code. But still this is a significant finding.  

Looking abroad, we see similar problems. Even students who learn a code often write in a 
calculator notation in their documents. They learned a math code and got their books transcribed in 
that code, but obviously many students think it cumbersome to write in code. And not only that, many 
teachers and peers prefer a way to notate math in such a way that both parties can understand and 
manipulate it. One approach is to provide automatic translation between a braille code such as the 
Nemeth code and a visual representation, which is what HumanWare now offers in their notetakersiii.  

Our question – and we are still trying to answer it as this paper shows – is whether people can be 
equally as productive and gain an equally deep understanding of mathematics if they rely solely on a 
notation primarily designed for linear notation with a computer. Maybe we are taking too much of a 
shortcut here? 

4 Weak points 
This notation initially only covered primary and secondary education, not higher education. And it 

was good for writing, but not good for automated conversion. One of the problems we found was the 
use of spaces. For example, there is a rule that spaces terminate superscript and subscript text, which 
is usually very convenient but looks ‘wrong’ when you combine the two, as in x_2 ^2 (versus x_2^2 
which equates to x_4). Note that it is the space between x_2 and ^2 that makes the difference. 
Mistakes are easily made! In MathML these examples can be written as follows, respectively: 

<math>  <msup>  <msub>  <mi>x</mi>  <mn>2</mn>  </msub>  <mn>2</mn>  </msup>  
</math> 

<math>  <msub>  <mi>x</mi>  <msup>  <mn>2</mn>  <mn>2</mn>  </msup>  </msub>  
</math> 

Consider the previous example again. It can be rewritten as (x_2)^2, which is arguably more 
readable. The same goes for fractions, e.g. x/2 is clear, but in 4/x/2 we need parentheses or spaces as it 
could mean (4/x)/2 or 4/(x/2).  

The use of parentheses seems a great solution in these relatively simple cases. It helps to identify 
chunks quickly. But in more complex formulas this approach can lead to a confusing jumble of 
parentheses and it is not always obvious at once where to place them, e.g. ((a+b)/c)*(x-y^b)/sqrt(a-b). 
On the other hand: even in spatial notation this formula requires a good display strategy. 

Another aspect of using parentheses is that users must understand their meaning and have some 
basic knowledge of operator precedence. But then, they also need to know this for spatial notation.  

Our present notation is convenient enough for daily use by humans. Someone may make a mistake 
and forget a space or a parenthesis of some kind, or type a space or a parenthesis too much, and one 
will mostly still understand what a formula was meant to be written like. In that respect we humans 
are still smarter than conversion programs – albeit much slower. But our ‘linear universal math 
notation’ needs to be expanded and improved for automation. And on an academic level, omitting or 
misplacing a symbol could be considered to be an actual error. The biggest challenge we face in this 
respect is to create a set of rules that is specific enough to result in a concise and unambiguous 
notation – and not resulting in a flood of parentheses in relatively simple formulas. 



Probably the most intuitive part of the notation is the linearization. As becomes evident from 
reading our discussion of spaces and parentheses, there are still some problems to work out. But in 
general, the underlying concepts are clear. The primary weak spot in this area is the notation of text 
directly under or over other text, e.g. as marked up in MathML with the <munder> and <mover> 
elements – text under and above other text is not a problem. An example is the vector arrow: 

<math>  <mover>  <mo></mo>  <mi>T</mi>  </mover>  </math> 
We currently notate this as {-->T, where the curly bracket indicates that the next symbol is written 

above the text that follows it. The obvious flaw in this rule is that it is not immediately clear where the 
‘over-text’ stops and the regular text begins. As a more advanced example, think about how to write 
complex (imaginative) numbers with this notation. 

A final problem is that the notation can become quite verbose, though we try to keep descriptions 
short by using abbreviations where possible (see also section 2.2). There are a few reasons for our 
wish for brevity. Long descriptions take longer to type. And there is only so much that fits on a 
(portable) braille display. Authors of mathematical content use single-space symbols – assuming a 
monospaced font – so we shouldn’t assume we can replace these with lengthy descriptive terms 
without a loss of readability. In the future we might also investigate embossing the notation on paper 
in 6-dot or 8-dot braille. This introduces yet more (physical) limits on the length of these descriptions. 

5 Improvements: MathML-proof 
In 2015 we set out to find MathML notations for all examples that were illustrating our rules and 

descriptions of symbols that were displayed on our website. This site was created in 2009, when the 
Dedicon notation was accepted in The Netherlands. Only in the case of the notation for logarithmic 
formulas we couldn’t find MathML that would render the Dutch (European) way of notating this. 
However, the American notation, e.g. log_10 100 = 2 or log_10(100) = 2, is perfectly understandable 
by sighted Dutch students and the linear universal notation comes closer to the American than the 
Dutch notation. In the Dutch print notation the 10 in this example is written to the upper left of ‘log’ 
instead of bottom right of it. 

Writing the examples in MathML was preparation for rendering the Dedicon notation 
automatically. There was also an immediate advantage: partially sighted readers can zoom in without 
losing sharpness of the script. 

The process is not yet finished. We are still working on improvements. If we succeed in automatic 
transcription, the advantages are obvious. Our students will be able to profit from TTS, our notation 
can be implemented in software like Infty Reader, NVDA, MathType and so on, and others may use it 
as well. After all, 1/2 is more readable with TTS than 1 ü2, but the natural speech feedback and 
interactive navigation options of MathML are a clear benefit. 

If we write more rigorous rules the notation can be specified with the same techniques used to 
specify the syntax of programming languages and other (context-free) languages, e.g. grammars. We 
are therefore hopeful that an automated conversion from MathML will be possible and that the 
opposite, i.e. a parser for the notation, will be accomplished too. 

  

5.1 Changes are not always welcome 
As we said, we identified several inconsistencies, especially in the use of spaces and parentheses. 

Tightening the rules is necessary, but will this be welcomed by users or will it be rejected as ‘yet 
another change’ requiring much more discipline in applying strict rules? Do users even need to follow 
these strict rules in work that is intended only for private use? And can we simplify nested formulas 
by removing parentheses based on the rules of operator precedence? That is why we have a user-



group that discusses proposed changes. This may help greatly in understanding how to communicate 
about the changes in order to get them accepted. 

 

6 Additions 
For higher education the notation needs to be expanded. Step 1 (section 2.1) is as good as 

complete. But the work on step 2 (section 2.2) is far from finished. This is a rather difficult part. Not 
all cases are defined yet, there are many areas to explore, and sometimes notations in another context 
may have a different meaning. For the moment we are expanding the notation when a student requires 
a book where we find notation that is not yet covered. As we do not employ scientists at the highest 
level in every field – to begin with not in math – we struggle with this. What is the meaning of 
specific symbols, how do we describe and/or name them – visually and/or semantically? This process 
is further complicated by the fact that one symbol can mean many different things in different fields or 
even in different contexts within the same book.  

A clear example is the use of arrows, which we describe and notate visually, e.g.  becomes -->. 
But how do we linearly write an upward-pointing arrow? And a left-pointing arrow above a right-
pointing arrow? The same is true for symbols that authors may interpret and use differently, for 
example the distinction between a subset and a proper subset. We do not have the resources to 
guarantee that every symbol is described in a semantically correct way in every book. This is a 
problem primarily for material in higher education. 

 

7 Following established and proven codes 
Of course we encounter these challenges in other fields as well. It would be much easier if we 

could just follow established and proven codes. We did consider using the Nemeth Code or UEB. But 
yet another change is not welcomed in our country and it would mean that all teachers and itinerant 
teachers would have to be (re)educated. This may not go well in a country where the focus has shifted 
from braille on paper to braille as just another output method on the PC that should be readily 
understood. On top of this problem, we found that in many countries both itinerant and especially 
mainstream teachers are reluctant to learn a braille math codeiv.  

Maybe the solution lies in adopting a notation like AsciiMath, which definitely provides the more 
stringent rules we are missing. But again, the ease of use and direct legibility of such a standard needs 
to be considered and tried in the field. In particular, AsciiMath will probably not have the symbol 
substitutions we require – and it remains to be seen to what extent Nemeth covers those hundreds of 
mathematical symbols defined in the Unicode standards. But other agencies have worked with 
AsciiMath and we think we should do more research in this area.  

On the other hand, LaTeX is great for specifying symbols but might become tedious or difficult to 
write, especially for people in primary and secondary education. And it would put them in an isolated 
position again, since no other students or teachers know LaTeX. That having been said, we do 
produce books with LaTeX on request, that is: we use a form of ‘Human Readable LaTeX’, leaving 
out all unnecessary editing commands (like bold, italic, and so on). We only produce them for 
academic students in STEM-environments, where all other students and teachers ‘speak this language’ 
and papers are mostly written in LaTeX. 



8 Internationalization? 
Could our solution on the other hand, be an example for other countries? Or could our notation 

even be altered in such a way that it would be truly ‘universally’ usable? E.g. if we would use 
descriptions that are based on the English terms? When we observe how flexible young people are in 
switching between braille on the braille display and braille on paper and between different languages, 
we venture to suppose that this surely is an option – a chance even. 

Our linear universal notation could be an enrichment even for students who do learn a math code 
but need a notation that is easy to communicate directly with sighted peers or teachers, allowing both 
parties to notate in their own preferred spatial or coded notation as well. We hope the quick fix will 
thus continue to be a useful tool. 

i  See Papers from the International Workshop on “Digitization and E-Inclusion in Mathematics and Science 2012″  
(http://www.inftyreader.org/?p=315): Dorine in ‘t Veld: Promoting inclusion in mathematics and science in secondary 
mainstream and higher education 

ii As you may have noticed, the use of spaces in 5 ü2 is different than in 5/2. Students in primary and secondary education 
easily adjust, but don’t know why this is so (because they never learnt the math braill code that is at the basis of this use of 
spaces. 

iii http://www.humanware.ca/web/en/Newsletter/0312131432.html  

iv  On http://river-valley.zeeba.tv/mawen-mathematical-working-environment/ a nice overview is available on previous 
attempts to make math more accessible in the EU Micole program. It was in several conversations with project participants that 
we were confirmed about the resistance to braille math codes growing everywhere, the main reason being that codes complicate 
communication between blind and sighted people. 
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